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Models for the in-host dynamics of malaria revisited:
errors in some basic models lead to large over-estimates of
growth rates
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

The mathematical model of the in-host dynamics for malaria parasites of Anderson, R. M., May, R. M. & Gupta, S.

(1989), Parasitology 99 (Suppl.) S59–S79, and subsequently used by other authors, contains an error. This leads to very

substantial over-estimates in parasite growth rates. A corrected form of the model is presented in this paper.
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 

As our knowledge of the biology of malaria parasites

has increased, there has been parallel interest in

trying to understand the quantitative processes

which regulate parasite growth in its host. This has

resulted in several papers over the past decade

modelling the interaction of parasites and their

hosts. These include 4 studies of the effect of red cell

destruction and specific immunity on the regulation

of parasite levels (Anderson, May & Gupta,

1989; Hellriegel, 1992; Gravenor, McLean &

Kwiatkowski, 1995; Hetzel & Anderson, 1996). All 4

papers are based on the parasite growth model

proposed by Anderson et al. (1989). In its simplest

state, in the absence of immunity, the model uses 3

linked differential equations to describe changing

levels of uninfected and infected red blood cells and

free merozoites. These equations are

dx!dt!Λ"µx"βxs (1)

dy!dt!βxs"αy (2)

ds!dt!αry"δs"βxs, (3)

where x, y and s are the concentrations of uninfected

cells, infected cells and free merozoites, respectively

(cells!ml); Λ the rate at which new red cells are

formed (cells!ml!day) ; µ, α and δ are the death

rates of uninfected red cells, infected red cells and

merozoites, respectively (!day); β is the rate constant

describing the rate at which merozoites invade red

cells (!cell!ml!day) and r the number of merozoites

released!rupturing schizont.

In this model, it is assumed that all red cell

destruction in addition to the normal removal of old

red cells, is due only to the rupture of infected cells.
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The life of an infected red cell is assumed to follow

an exponential decay, with an average span equal to

the parasite growth cycle (i.e. 48 h for Plasmodium

falciparum) so 1!α!parasite cycle time.

This assumption of an exponential decay in the

infected red cell, and of smooth exponential growth

in the increase in the free merozoites and infected red

cells contrasts with the essentially discontinuous

process which occurs in nature. Infected red cells

have a fixed life-time and for each subset of the

parasite population, the number of infected cells

increases essentially instantaneously every 48 h for

P. falciparum. This difference between the model

and the actual process leads to the anomalous growth

rates detailed below.

Although it seems intuitively obvious that the rate

at which merozoites are being released (the αry term

in Equation 3) should be the number of merozoites

times the rupture rate of schizonts, further reflection

will indicate that there is a significant problem in this

term. To readily appreciate this, let us consider an

even simpler model than the one proposed above.

Under initial conditions, the number of red cells will

be nearly constant, and experimental work shows

that under these conditions nearly all merozoites

invade (Gravenor et al. 1995; Cheng et al. 1997) and

there is an exponential increase in parasitaemia (i.e.

y
t
!y

!
ekt). Under these conditions, the temptation is

to say that the growth rate (k) is αr or 8!day for

P. falciparum (cycle time of 2 days and 16

merozoites!schizont). Even for a discontinuous

model, this is clearly not correct. An increase of 8 in

1 day would give an increase of 8$8!64 over 2

days. If exponential models are being considered as

above, then the growth constant should be αln (r) or

1%3863!day not the 8!day calculated from αr. The

calculated growth over 2 days using values of 1%3863

and 8 is 16 and 8%89 million, respectively, or
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approximately a 0%55 million-fold error when the

latter is used.

A similar but more complicated problem arises

with the model defined by Equations 1–3. An idea of

the magnitude of the error can be obtained by

numerically solving these equations under boundary

conditions. Specifically, where x&y, βx& δ and β
sufficiently large so that merozoites released will

rapidly invade, the concentration of infected cells

should grow exponentially, reaching r times the

initial concentration over a period of 1!α. Again,

these are conditions which could approximate the

early stages of an infection. However, with r!16

and α!0%5, appropriate for P. falciparum, then the

model predicts that the concentration of infected

cells increases by approximately 2%8 million-fold

over 2 days, not the expected 16-fold increase.

Clearly, there is an error in Equations 1–3 which

leads to very large errors in the parasite growth rates.

A more appropriate form of the equations can be

derived by again considering the boundary con-

ditions approximating initial growth. Rewriting

Equation 3 to substitute an unknown growth con-

stant, k, for r gives

ds!dt!αky"δs"βsk. (3a)

Combining this with Equation 2, again assuming

x&y and βx& δ, gives

dy!dt! (k"1)αy"ds!dt. (4)

Integration of this equation gives

y
t
!y

o
e(k−")

αt#s
o
"s

t
. (5)

If we examine the situation where the free con-

centration of merozoites is small compared to the

number of infected cells (β sufficiently large), s
o
"s

t

will be negligible compared to y
t
. After 1 parasite

growth cycle (t!1!α), y
t
!y

t
! ry

o
. I.e. under

conditions where all merozoites can invade, the

increase in the concentration of infected cells over 1

growth cycle is equal to the number of merozoites

released!schizont. Substituting these values into

Equation 5 gives r! e(k−"). Hence, k! ln (r)#1 and

Equation 3 becomes

ds!dt!α(ln (r)#1) y"δs"βxs. (3b)

Numerical simulation of parasite growth using

Equations 1, 2 and 3b gives the expected values (i.e.

growth over a period of 1!α is ' r).

Left uncorrected, the use of Equation 3 in work

based on the original model may lead to substantial

errors in the dynamics of the processes these models

describe. Substitution of Equation 3b in order to get

the correct growth rates in these models may still

have a significant impact on the results and con-

clusion of papers using this model. Until re-

examined, the conclusions in such papers need to be

treated with caution.

Although it offers a mathematical solution to the

problem of incorrect growth rates, the ln (r)#1 term

in Equation 3b has no biological counterpart in a

qualitative model of parasite growth. For example, it

is not the number of parasites released!schizont,

only the theoretical rate constant required to get

correct growth kinetics. While there may be

situations in modelling where such solutions offer

computational convenience, the penalty is the loss of

direct biological relevance.

In the accompanying note, Gravenor & Lloyd

(1998) offer an elegant solution to this problem. By

splitting the parasite population into enough small

compartments one can accurately model discon-

tinuous parasite growth using a series of differential

equations.

An alternative strategy is not to describe the

process as a series of differential equations relying on

rate constants, but to directly describe such processes

as a series of recursion equations. These describe the

population at discrete times in terms of the mul-

tiplication factors which occur between different

stages and the probability of surviving from one time

point to the next and the size of the population at a

previous time. This technique leads to com-

putationally efficient, deterministic and stochastic

simulations of population dynamics. It can also lead

to simple analytical solutions for equilibrium

situations. This approach has been used for

examining the transmission dynamics of malaria in

immune host populations (Saul, 1996) and for

calculating vectorial capacity of mosquito popu-

lations (Saul, Graves & Kay, 1990).

In the latter case, calculation of vectorial capacity

assuming that mosquitoes feed on a cyclic basis,

rather than the biologically inappropriate assump-

tion that mosquitoes feed at a constant rate as used

by Macdonald (1957), actually leads to a simpler

equation for vectorial capacity and also gives a higher

estimate of vectorial capacity than the equation

derived by Garrett-Jones (1974) based on

Macdonald’s model.

This re-evaluation of the Anderson model was

prompted by the author’s reviews of unpublished

work in which the original equations were adopted

without detecting the problem. The use of this

model in at least 4 published, peer-reviewed papers

by highly competent researchers shows how much

care is needed in this type of modelling. Deter-

ministic modelling based on sets of linked differential

equations is a powerful tool for understanding the

biological processes as demonstrated by Anderson

(1982). However, the simple conversion of essentially

discontinuous, probability-driven events to continu-

ous rates sometimes leads to equations which do not

necessarily reflect the underlying process. Cavaet

emptor!
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